

5	(a) Show that $\frac{1}{12} = \frac{1}{3} - \frac{1}{4}$ (b) Hence, or otherwise, determine the exact value of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$	1 3
6	The point Q divides the line joining P(-1-1,0) to $R(5,2,-3)$ in the ratio 2:1. Find the coordinates of Q	3
7	Solve $\log_3(x^2 - 4) - \log_3(x - 2) = 3$	5
8	Before a forest fire was brought under control, the spread of the fire was described by a law of the form $A = A_0 e^{kt}$, where A_0 is the area covered by the fire when it was first detected and A is the area covered by the fire <i>t</i> hours later. If it takes one and a half hours for the area of the forest fire to double, find the value of the constant k This is the only calculator question	3
	30 marks	

	October Higher Extension Test – Answers					
1	a) $\overrightarrow{SR} = \begin{pmatrix} 2\\ 2\\ 1 \end{pmatrix}$ $2\overrightarrow{RS} = \begin{pmatrix} 4\\ 4\\ 2 \end{pmatrix}$ Hence Q = (10, 3, -2)					
	b) $\overrightarrow{SP} = \begin{pmatrix} 0 \\ -4 \\ 8 \end{pmatrix}$ $ SP = 4\sqrt{5}$, $\overrightarrow{SR} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} SR = 3$					
	$\cos PRS = \frac{0 \times 2 + -4 \times 2 + 8 \times 1}{4\sqrt{5} \times 3} = \frac{0}{4\sqrt{5} \times 3}$					
	$\cos PRS = 0$, so PRS is a right angle					
2	$f(g(x)) = f(x^{2} + 2)$ = $(x^{2} + 2)^{2} - 1$ = $x^{4} + 2x^{2} + 2x^{2} + 4 - 1$ = $x^{4} + 4x^{2} + 3$					
3	$\cos 2a =$ or simila $\cos 2a$	$= 1 - 2\sin^{2} a$ ar $= 1 - 2\sin^{2} a$ $= 1 - 2\left(\frac{3}{\sqrt{34}}\right)^{2}$ $= \frac{8}{17}$		$\sqrt{34}$ 3 a 5	3	
4	(i)	y = f(x -2)	(0,0) maps (2,-4) maps (4,0) maps	to (2,0) to (4,-4) to (6,0)		
	(ii)	(ii) $y = 1 - f(x - 2)$ (2,0) maps to (2,1) (4,-4) maps to (4,5) (6,0) maps to (6,1)		4		
	Annotate all three points on both graphs					

a) $\frac{1}{3} - \frac{1}{4} = \frac{4}{12} - \frac{3}{12} = \frac{1}{12}$	1
b) $\cos \frac{\pi}{12} = \cos \left(\frac{\pi}{3} - \frac{\pi}{4} \right) = \cos \frac{\pi}{3} \cos \frac{\pi}{4} + \sin \frac{\pi}{3} \sin \frac{\pi}{4}$	3
$= \frac{1}{2} \times \frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}$	
$= \frac{1+\sqrt{3}}{2\sqrt{2}}$	
$ \stackrel{6}{} PR = \begin{pmatrix} 6\\3\\-3 \end{pmatrix} \qquad q = p + \frac{2}{3} PR \qquad q = \begin{pmatrix} 3\\1\\-2 \end{pmatrix} Q = (5, 1, -2) $	3
$7 \qquad \log_{3} \frac{x^{2} - 4}{x - 2} = 3 \to \frac{x^{2} - 4}{x - 2} = 27 \to \frac{(x + 2)(x - 2)}{(x - 2)} = x + 2 \to x + 2 = 27, \ x = 27, $	= 25 5
8 $2 = 1e^{k1.5}$	
$2 = e^{1.5k}$	
$\log_{e}(2) = 1.5k$	
$\frac{\log_{e}(2)}{1.5} = k$	3
k = 0.462	
30 marks	